If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100a^2+a=0
a = 100; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·100·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*100}=\frac{-2}{200} =-1/100 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*100}=\frac{0}{200} =0 $
| b=7/675=0.010 | | 2x*2(4x-3)=34 | | 2+10h=8h | | 11x-5=25 | | 4x+31=55 | | 15-g=23-2g. | | 12/16x=18 | | 10w=12+4w | | 16x+2=180 | | x/3-17=20 | | 2(x+7)=3/4(8x+4) | | 95885934958345345353425343555x=x896895689856986-9889548968896/7 | | 0.25q+0.25(q+4)=17.50 | | 228=3-x | | X=2b+9 | | 4,140=180(n-2) | | 13=8x+32/8 | | -3+5y=22 | | X(1/7)+x(5/6)=x | | 6(z+3)=66 | | -16=-4+u/4 | | b+18/7=3 | | 5y+4y=9 | | 5z-12=20 | | 0.5*n=3 | | 7-5y=52 | | 4x+3+31=90 | | 3x-35+131=180 | | 3x-35=131 | | 7x=15-2x2 | | 20-n=15 | | (4x+3)+(15x—8)=90 |